This article shows you how to flatten nested JSON, using only $"column.*" and explode methods.
Sample JSON file
Pass the sample JSON string to the reader.
%scala
val json ="""
{
"id": "0001",
"type": "donut",
"name": "Cake",
"ppu": 0.55,
"batters":
{
"batter":
[
{ "id": "1001", "type": "Regular" },
{ "id": "1002", "type": "Chocolate" },
{ "id": "1003", "type": "Blueberry" },
{ "id": "1004", "type": "Devil's Food" }
]
},
"topping":
[
{ "id": "5001", "type": "None" },
{ "id": "5002", "type": "Glazed" },
{ "id": "5005", "type": "Sugar" },
{ "id": "5007", "type": "Powdered Sugar" },
{ "id": "5006", "type": "Chocolate with Sprinkles" },
{ "id": "5003", "type": "Chocolate" },
{ "id": "5004", "type": "Maple" }
]
}
"""Convert to DataFrame
Add the JSON string as a collection type and pass it as an input to spark.createDataset. This converts it to a DataFrame. The JSON reader infers the schema automatically from the JSON string.
This sample code uses a list collection type, which is represented as json :: Nil. You can also use other Scala collection types, such as Seq (Scala Sequence).
%scala import org.apache.spark.sql.functions._ import spark.implicits._ val DF= spark.read.json(spark.createDataset(json :: Nil))
Extract and flatten
Use $"column.*" and explode methods to flatten the struct and array types before displaying the flattened DataFrame.
%scala
display(DF.select($"id" as "main_id",$"name",$"batters",$"ppu",explode($"topping")) // Exploding the topping column using explode as it is an array type
.withColumn("topping_id",$"col.id") // Extracting topping_id from col using DOT form
.withColumn("topping_type",$"col.type") // Extracting topping_tytpe from col using DOT form
.drop($"col")
.select($"*",$"batters.*") // Flattened the struct type batters tto array type which is batter
.drop($"batters")
.select($"*",explode($"batter"))
.drop($"batter")
.withColumn("batter_id",$"col.id") // Extracting batter_id from col using DOT form
.withColumn("battter_type",$"col.type") // Extracting battter_type from col using DOT form
.drop($"col")
)Example notebook
Run the Nested JSON to DataFrame example notebook to view the sample code and results.